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ABSTRACT

A new numerical algorithm for the analysis of transient
electromagnetic fields in planar structures is proposed
based on the magnetic field integral equation (MFIE) and
marching-on-in-time approach. This algorithm solves the
problem of radiation boundary conditions in a natural
way unlike the FDTD method which needs an approx-
imated radiation boundary condition imposed at outer
boundaries of the structure. The algorithm is applica-
ble to multilayered planar structures and is competitive
to the FDTD method especially in the case of open and
radiating problems. The MFIE is applied in combina-
tion with boundary element approach and point matching
technique.

INTRODUCTION

Recently intensive reasearch has been developed for en-
hancing the application of the FDTD method in time-
domain electromagnetic field analysis concerning its stor-
age and computation time requirements as well as the
radiation boundary conditions for open structures. On
the other hand, the time-domain IE techniques, which of-
fer the attractive possibility of decreasing the dimensions
of the problem, have been practically applied only to 1-D
problems because of their lower computational efficiency
in the case of complicated shapes of the boundaries and
difficulties arising when imposing the bounadry conditions
at dielectric-to-dielectric interfaces. Besides, the IE tran-
sient analysis has always been restricted to scattering or
radiation problems.

The above mentioned shortcomings of the time-domain IE
techniques can be overcome for the case of layered struc-
tures which are simple from geometrical point of view and
are of great practical importance. In addition, the repre-
sentation of field vectors by equivalent source currents and
charges at the boundaries of interest offers the possibility
for easy application of radiation boundary conditions. In
this work the application of these techniques has been in-
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vestigated and an efficient algorithm developed. The basic
principles of the approach will be illustrated by a simple
open microstrip structure (Fig.1).

THEORY

1. Basic equations.

The MFIE is applied to determine the boundary values
of the field in two different regions (1 and 2, see Fig.1)
with parameters (po,€1) and (o, &2) respectively. The
time-domain boundary MFIE for i-th region in its most
general form is:
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where:
O, - angle which opens from the observation point into
the region enclosed by the surface S,
K,,J, and m, - field source’s magnetic currents, electric
currents and equivalent magnetic charges respectively,
fi - inward normal of the integrated surface at the point
of integration.

I : I ‘ are vector integral operators as follows:
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Here:

r - distance between the observation point P and the in-
tegration point @,

# - unit vector pointing from @ to P,

v, - speed of light for the medium enclosed by the surface.

The surface integral denoted by § is singular at the point
of observation and for surfaces at which there are no
sources it should be denoted by ff - the Cauchy princi-
pal value of the boundary integral from which the point
of observation has been excluded. All field quantities are
functions of both time and space. The dependence on
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Figure 1: Open microstrip transmission line

time is represented by the retarded time v = r—r/v. Here
the derivative 8/07 denotes the time derivative /9t for
t=r.

In order to introduce equivalent currents and charges at
the surfaces different from the source ones and obtain the
integral equation relating them the cross product of all
quantities with fg is taken, where fig is the inward sur-
face normal at the observation point. The equivalent sur-
face currents and charges are defined via the boundary
relations:

A E -K
axH = J (2)
and
9 - 1 = 1 1 dm
—(nH ~Ve(ax E)=—-—-V, K = ——
Gi(0) = VL Gix By = V. R =250 (9

Thus, the MFIE for the i-th region is transformed into:
O0V(P) = fio x (e.i{ =K} + LI} +
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Equation ( 4) is applied to both regions of the example
structure shown on Fig.1 - region (1) being the dielectric
slab and region (2) - the air region. The boundary surfaces
consist of source surfaces, the dielectric interface and out-
ward radiating surfaces. The equivalence of sources and
field surface currents/charges is obvious from ( 4). It im-
plies that outward radiation from a surface segment would
lead to zero contribution of that segment to the current
estimated at any point in the region of interest. Thus, the
boundaries subject to discretization and numerical evalu-
ation are only the bottom ground conducting plane and
the dielectric-to-air interface plane.

The unknown quantities at the bottom plane are both
surface electric current components (J,,J,). Same are the
unknowns of the strip. At the dielectric interface the un-
knowns are the two components of the surface electric
currents as well as those of the surface magnetic currents
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(K,,K.) and the surface magnetic charges m for each re-
gion. The magnetic charges actually are not separate un-
knowns because of their relation to the magnetic currents
via the boundary relation ( 3). Their values are stored
and updated according to the relation:

(73 .
V. Kdt

th—1

1y -
m(t) = _/ V. Kdt = m(te) — (5)
o
Here the V,.K is approximated with finite differences. For
the edge patches where the integrated planes are trun-
cated by radiation walls extrapolation formulas are ap-
plied.

The problem is defined by the two MFIE for both regions
and the continuity boundary conditions at the dielectric
interface which allow us to decrease the unknowns only to
those of region (1):

KW = _K®
E® _F® (6)
ml) = @

The procedure of solving both equations at the interface
plane in general is complicated because it leads to cou-
pling of both electric and magnetic currents. But in the
case of layered structures electric and magnetic currents
appear to be decoupled because of the zero value of the
cross product fig X (J x #) when the observation and in-
tegration points lie on a same plane (see equation ( 4)).
Thus, after applying the boundary conditions ( 6) the
electric current at the left side of the resultant equation
becomes zero and the resultant equation contains only
magnetic currents and magnetic charges in the surface in-
tegral of the interface:
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where:

SC® - source contribution in the MFIE of region (i),
CC® - contribution of conducting surfaces other than the
ones lying on the interface for region (i).

The equations for each component arising from { 7) are
coupled through the magnetic charges m which are func-
tions of both components of K. Therefore, they have to be
solved as a system. After applying boundary discretiza-
tion and point-matching procedure two coupled sets of
equations are obtained:

ZZ+ K, + ZY * K,
YZ*K,+YY %K,

rz
FY,

(8)

where the vectors FZ and FY are obtained after cal-
culating the retarded-time contribution of all surfaces in
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Figure 2: Longitudinal component of electric current
It = 90AL

the MFIE for J, and J, respectively. The matrices ZZ,
ZY,YZ,YY are obtained after discretization of the
interface region and applying point-matching procedure.
These matrices depend only on the geometry of the inter-
face and are the same for every time step. Consequently,
the elements of the overall matrix are first calculated, then
the inverse matrix is found.

2. Discretization and basis functions.
Lagrange interpolation polynomials are used in time
which is equivalent to an expansion in Taylor series up
to the second order member in time:
0f (T, t) 10 f(Zg,t)
Fq,7) = f(Zg,t Ar+ = L ATE
fl@q,m) = f(Zg, te) + = + 550 o

where:

AT =T — 1 =1 — (to —T/v),

to being the current moment of time, ¢ - the center of time
interval for interpolation and r =| 7 |=| Zp — &g |. All
field quantities are considered constant in a single patch,
i.e step basis functions are used in space. This approxima-
tion in time is desirable since it leads to integrals which
have analytical solutions and are fast calculated during
the time-stepping procedure. Smoother basis functions in
space are desirable only in the case of complex geometry
when the integrals including charges may have high order
singularities. For the considered case of layered structures
with the Lagrange interpolation in time this is not needed.
Discretization steps in space (patch size) and time are re-
lated by Ah = cAt where ¢ = v, is the velocity of light.

Special care should be taken for the self-patch integration
of magnetic charges which gradient cannot be neglected
in this case. Their expansion in Taylor series now is:

m(fQﬂ‘) = m(.T:Q, tk) — Wsm(fQ,to) (10)
_ iam(fQ,fo) n l (.7:)2 82m(fQ,tQ)
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Figure 3: Transverse component of electric current J,,,t =

90AtL

Since charges are determined according to ( 5) equations
obtained from ( 7) are solved as a system (see 8). Matrices
involved are sparce and matrix inversion is made just once
since geometry does not change in time.

RESULTS AND DISCUSSION

The resources required by this approach in respect with
memory and computation time depend not only on the
size of the structure (number of patches to be integrated)
but also on the ratio of contuctor patches to dielectric
interface patches. At every dielectric interface patch five
quantities are stored (the two components of J and K
and the magnetic charge m), whereas at every conductor
patch only two quantities are needed (both components
of J). Besides, it is necessary to store a history package of
values back to a relarded time corresponding to the largest
dimension of the structure. Thus, if the number of patches
in the y direction is denoted by A for the grounded plane,
by W for the strip and by L in the direclion of z-axis,
then at every time step

N=(TA-3W)x L

unknowns are to be calculated and stored. The dimen-
sion of the history package depends mainly on the largest
dimension (= L) and the resonant properties of the struc-
ture. The number of space steps along z-axis is of no sig-
nificant importance unless it is comparable with £ which
is not the case with the layered structures in practice.

There is no need of numerical integration when Lagrange
interpolation in time is used. The integration of every
patch is reduced to six basic integrals of local coordinates,
namely:

I / v ! ded
r = = n
2 e+ D+ (7 + An, P
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Figure 4: Normal component of magnetic field H,,t =
90A¢L
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which have analytical solution. Here An, is the number
of space steps with respect to the i-axis between the inte-
gration point and the observation point.

Numerical simulation was carried out for the microstrip
line in Fig.l. with number of space steps A = 30 in the
y-direction (W = 6 for the strip conductor) and L = 40
in the z-direction. The number of steps in the z-direction
is B = 6. Here the space step is Ah = 0.1 mm. The
dielectric constant of the substrate is £, = 9.6. Gaussian
pulse excitation is used at z = 0, where the E field and
H field are replaced by equivalent current sources, the
J* having only z-component and K* - only y-component.
Constant distribution of the source currents is assumed
for 0 < ¢ < d and —w/2 < y < w/2 and zero elsewhere.
The source field is considered to be TEM, so, no magnetic-
charge sources are present. The pulse width (from maxi-
mum value to cut point) is assumed 8 = 20. Fig.2 shows
the longitudinal J, component (H,-component) at time
step 90A¢. Fig.3 and Fig.4 show the J, (H.) component
and the H, component (m/ug) respectively at the same
time reference. Fig.5 shows the J, component at a time-
step 130A¢.
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Figure 5: Longitudinal component of electric current

J..t = 130At

CONCLUSION

A new possibility for analyzing transient fields in layered
structures is proposed in this paper. A numerical ap-
proach for coupling the MFIE on mixed conductor and di-
electric interfaces has been developed. It has been shown
that the method is especially efficient for radiating and
open boundary problems.
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