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ABSTRACT

A new numerical algorithm for the analysis of transient
electromagnetic fields in planar structures is proposed
based on the magnetic field integral equation (MFIE) and
marching- on-in-t ime approach. This algorithm solves the
problem of radiation boundary conditions in a natural
way unlike the F’DTD method which needs an approx-
imated radiation boundary condition imposed at outer
boundaries of the structure. The algorithm is applica-

ble to multilayered planar structures and is competitive

to the FDTD method especially in the case of open and
radiating problems. The MFIE is applied in combina-

tion with boundary element approach and point matching

technique.

INTRODUCTION

Recently intensive reasearch has been developed for en-

hancing the application of the FDTD method in time-
domain electromagnetic field analysis concerning its stor-

age and computation time requirements as well as the
radiation boundary conditions for open structures. On
the other hand, the time-domain IE techniques, which of-
fer the attractive possibility of decreasing the dimensions
of the problem, have been practically applied only to 1-D
problems because of their lower computational efficiency
in the case of complicated shapes of the boundaries and
difficulties arising when imposing the bounadry conditions
at dielectric-to-dielectric int erfaces. Besides, t he IE t ran-

sient analysis has always been restricted to scattering or
radiation problems.

The above mentioned shortcomings of the time-domain IE
techniques can be overcome for the case of layered struc-

tures which are simple from geometrical point of view and
are of great practical importance. In addition, the repre-
sentation of field vectors by equivalent source currents and
charges at the boundaries of interest offers the possibility
for easy application of radiation boundary conditions. In
this work the application of these techniques has been in-

vestigated and an efficient algorithm developed. The basic

principles of the approach will be illustrated by a simple

open microstrip structure (Fig. 1).

THEORY

1. Basic equations.

The MFIE is applied to determine the boundary values

of the field in two different regions (1 and 2, see Fig.1)

with parameters (PO, c1) and (po, C2) respectively. The

time-domain boundary lLFIE for
general form is:

@ofi@) = .,~{-I?$)} + ;{fl))

+ e,fi{(ii x i(~))} + ~{(fi x

where:
630- angle which opens from the

i-th region in its most

observation point into

the region enclosed by the surface S,

l?$,~~ and m, - field source’s magnetic currents, electric

currents and equivalent magnet ic charges respectively,

i+ - inward normal of th,e integrated surface at the point

of integration.

~,~ ,?~ are vector integral operators as follows:

Here: ‘

r - distance between the observation point P and the in-

tegration point Q,

; - unit vector pointing from Q to P,

v, - speed of light for the medium enclosed by the surface,

The surface integral denoted by $ is singular at the point

of observation and for surfaces at which there are no

sources it should be denoted by H -” the Cauchy princi-

pal value of the boundary integral from which the point

of observation has been excluded. All field quantities are

functions of both time and space. The dependence on
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Figure 1: Open microstrip transmission line

time is represented by the retarded time ~ = r-–r-iv. Here

the derivative O/dr denotes the time derivative 6’/i%for

t=T.

In order to introduce equivalent currents and charges at

the surfaces different from the source ones and obtain the

integral equation relating them the cross product of all

quantities with ho is taken, where ho is the inward sur-

face normal at the observation point. The equivalent sur-

face currents and charges are defined via the boundary

relations:

and

Thus, the hfFIE for the i-th region is transformed into:

(4)

Equation ( 4) is applied to both regions of the example

structure shown on Fig.1 - region (1) being the dielectric

slab and region (2) - the air region. The boundary surfaces

consist of source surfaces, the dielectric interface and out-

ward radiating surfaces. The equivalence of sources and

field surface currents/charges is obvious from ( 4). It inl-

plies that outward radiation from a surface segment would

lead to zero contribution of that segment to the current

estimated at any point in the region of interest. Thus, the

boundaries subject to discretization and numerical evalu-

ation are only the bottom ground conducting plane and

the dielectric-to-air interface plane.

The unknown quantities at the bottom plane are both

surface electric current components (Jv ,J=). Same are the

unknowns of the strip. At the dielectric interface the un-

knowns are the two components of the surface electric

currents as well as those of the surface magnetic currents

(l<Y,KZ) and the surface magnetic charges m for each re-

gion. The magnetic charges actually are not separate un-

knowns because of their relation to the magnetic currents

via the boundary relation ( 3). Their values are stored

and updated according to the relation:

m(h) = – ~’k V..I?dt = m(t~.l) – ~~~, Va.I~dt (5)

Here the V..1; is approximated with finite differences. For

the edge patches where the integrated planes are trun-

cated by radiation walls extrapolation formulas are ap-

plied.

The problem is defined by the two MFIE for both regions

and the continuity boundary conditions at the dielectric

interface which allow us to decrease the unknowns only to

those of region (l):

~@) = _~7(2)

~(l) = _iJ2) (6)

m(l) = _m(2

The procedure of solving both equations at the interface

plane in general is complicated because it leads to cou-

pling of both electric and magnetic currents. But in the

case of layered structures electric and magnetic currents

appear to be decoupl~d because of the zero value of the

cross product ho x (J x f) when the observation and in-

tegration points lie on a same plane (see equation ( 4)).

Thus, after applying the boundary conditions ( 6) the

electric current at the left side of the resultant equation

becomes zero and the resultant equation contains only

magnetic currents and magnetic charges in the surface in-

tegral of the interface:

o= SC(’)– SC(2)+ cc(’) – CC(2)+ (7)

+ ho x (F,a{lw} + e2fi{i(’)}) +

+ ho x ~ (~~{rn(’)} + ~{m(l)})

where:

SC(’) - source contribution in the MFIE of region (i),

CC(’) - contribution of conducting surfaces other than the

ones lying on the interface for region (i).

The equations for each component arising from ( 7) are

coupled through the magnetic charges m which are func-

tions of both components of I;. Therefore, they have to be

solved as a system. After applying boundary discretiza-

tion and point-matching procedure two coupled sets of

equations are obtained:

ZZ*KZ+ZY *KU = Fz
YZ*KZ+YY*KV = FY, (8)

where the vectors FZ and FY are obtained after cal-

culating the retarded-time contribution of all surfaces in

1052



00,5- h~~

001

0025

0

4c@5

a

Figure 2: Longitudinal component of electric current

Jz,t= 90At

the MFIE for JZ and JU respectively. The matrices 22,

ZY, YZ, YY are obtained after discretization of the

interface region and applying point -mat thing pro cedure.

These matrices depend only on the geometry of the inter-

face and are the same for every time step. Consequently,

the elements of the overall matrix are first calculated, then

the inverse matrix is found.

2. Discretization and basis functions.

Lagrange interpolation polynomials are used in time
which is equivalent to an expansion in Taylor series up
to the second order member in time:

where:

fb=T–t~= t~–(t~– T/V),

to being the current moment of time, tk-the center of time

interval for interpolation and r = I F 1= I 2P – ZQ 1.All

field quantities are considered constant in a single patch,

i.e step basis functions are used in space. This approxima-

tion in time is desirable since it leads to integrals which

have analytical solutions and are fast calculated during

the time-stepping procedure. Smoother basis functions in

space are desirable only in the case of complex geometry

when the integrals including charges may have high order

singularities. For the considered case of layered structures

with the Lagrange interpolation in time this is not needed.

Discretization steps in space (patch size) and time are re-

lated by Ah = cAt where c = V2 is the velocity of light.

Special care should be taken for the self-patch integration

of magnetic charges which gradient cannot be neglected

in this case. Their expansion in Taylor series now is:

o~ -J”, N.
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Figure 3: Transverse component of electric current JV,t =

90At

Since charges are determined according to ( 5) equations
obtained from ( 7) are solved as a system (see 8). Matrices

involved are sparce and rniitrix inversion is made just once

since geometry does not change in time.

RESULTS AND DISCUSSION

The resources required by this approach in respect with

memory and computation time depend not only on the

size of the structure (number of patches to be integrated)

but also on the ratio of contuctor patches to dielectric

interface pat ches. At every dielectric int erfi~ce pat ch five

quantities are stored (the two components of J and A’

and the magnetic charge m), whereas at every conductor

patch only two quantities are needed (both components

of J). Besides, it is necessary to store a history package of

values back to a retarded time corresponding to the largest

dimension of the structure. Thus, if the number of patches

in the y direction is denoted by A for the grounded plane,

by W’ for the strip and by L in the direction of z-axis,

then at every time step

N=(7A–3W)XL

unknowns are to be calculated and stored. The dimen-
sion of the history package depends mainly on the largest

dimension (= L) and the resonant properties of the struc-

ture. The number of space steps along z-axis is of no sig-

nificant importance unless it is comparable with L which

is not the case with the layered structures in practice.

There is no need of numerical integration when Lagrange

interpolation in time is used. The integration of every

patch is reduced to six basic integrals of local coordinates,

namely:
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Figure 4: Normal component of magnetic field Hz,t = Figure 5: Longitudinal component of electric current

90At Jz,t = 130At

5
1/2

1,3 =

‘1’2 (& +Ant)2: (v +An,)2)3 ‘tdq

1
1f 2

1: = (t+ b)

-’o ~(f + Ant)’ + (q + An,)’

d[dq

!
1/2

I;, =
(t+ An,)

‘1/2 (~(f+An,)2 + (V+Arzj)’)’ ‘tdq

~

1/2

I;, =
(v+ An,)

-’/2 (~(( +Ant)’+(q+An,)2)3 ‘(dq

which have analytical solution. Here An, is the number

of space steps with respect to the i-axis between the inte-

gration point and the observation point.

Numerical simulation was carried out for the microstrip

line in Fig. 1. with number of space steps A = 30 in the

y-direction (W’ = 6 for the strip conductor) and L = 40

in the z-direction. The number of steps in the z-direction

is B = 6. Here the space step is Ah = 0.1 mm. The

dielectric constant of the substrate is + = 9.6: Gaussian

p+ulse excitation is used at z = O, where the E field and

H field are replaced by equivalent current sources, the

~ having only c-component and l~z - only y-component.

Constant distribution of the source currents is assumed

for O < x < d and –w/2 < y < w/2 and zero elsewhere.

The source field is considered to be TEM, so, no magnetic-

charge sources are present. The pulse width (from maxi-

mum value to cut point) is assumed ~ = 20. Fig.2 shows

the longitudinal J: component (fIV-component) at time

step 90 At. Fig.3 and Fig.4 show the JU (H, ) component

and the H. component (m/po) respectively at the same

time reference. Fig.5 shows the JZ component at a time-

step 130Ai!.

CONCLUSION

A new possibility for analyzing transient fields in layered

structures is proposed in this paper. A numerical ap-

proach for coupling the MFIE on mixed conductor and di-

electric interfaces has been developed. It has been shown

that the method is especially efficient for radiating and

open boundary problems.
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